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ABSTRACT

We previously reported two graph algorithms for
analysis of genomic information: a graph comparison
algorithm to detect locally similar regions called
correlated clusters and an algorithm to find a graph
feature called P-quasi complete linkage. Based on
these algorithms we have developed an automatic
procedure to detect conserved gene clusters and
align orthologous gene orders in multiple genomes.
In the first step, the graph comparison is applied to
pairwise genome comparisons, where the genome is
considered as a one-dimensionally connected graph
with genes as its nodes, and correlated clusters of
genes that share sequence similarities are identified.
In the next step, the P-quasi complete linkage analysis
is applied to grouping of related clusters and
conserved gene clusters in multiple genomes are
identified. In the last step, orthologous relations of
genes are established among each conserved
cluster. We analyzed 17 completely sequenced
microbial genomes and obtained 2313 clusters when
the completeness parameter P was 40%. About one
quarter contained at least two genes that appeared in
the metabolic and regulatory pathways in the KEGG
database. This collection of conserved gene clusters
is used to refine and augment ortholog group tables
in KEGG and also to define ortholog identifiers as an
extension of EC numbers.

INTRODUCTION

With the availability of complete genome sequences for an
increasing number of organisms whole genome comparison
has become a powerful method for understanding genome
structure, function and evolution. In the traditional sequence
comparison, gene functions can be predicted by sequence
similarity by establishing orthologous relations to well-
characterized genes in other organisms. In whole genome

comparison, additional clues for functional implications may
be obtained by examining positional coupling of genes on the
chromosome by establishing conservation of gene orders and
gene clusters. Suppose, for example, that gene A in one
organism is functionally well characterized and gene A′ in
another organism is predicted as orthologous to A. Suppose
also that there is gene B immediately adjacent to gene A but its
function is unknown. If its ortholog B′ is adjacent to A′ or if the
positional coupling of A–B is conserved among relatively
distant species, there is a good chance that genes A and B are
functionally coupled.

A number of reports have already been made concerning the
conserved clusters of genes by comparative analysis of
complete genome sequences. Generally speaking, even
between phylogenetically close species, such as between
Escherichia coli and Haemophilus influenzae, there is a
considerable amount of juxtaposition of genes, but at the same
time there is a tendency for short-range conservation of gene
clusters (1–3). The conserved clusters are likely to represent
functionally coupled genes, such as those forming operon
structures for co-expression and/or those encoding physically
interacting protein subunits (4–6). In addition to such an
ancient evolutionary origin, a multicistronic gene cluster
sometimes results from horizontal transfer between species
(7,8). Furthermore, multiple genes in a bacterial operon tend to
be fused into a single gene encoding a multi-domain protein in
eukaryotic genomes (9,10). We have also utilized the information
about sequence similarity and positional correlation of genes
for functional prediction of ABC transporters (11) and other
membrane proteins (12), as well as for metabolic pathway
reconstruction from complete genome sequences (13).

The primary information in the genome is the sequence of
nucleotides and the resulting sequence of amino acids, but at a
higher level of abstraction the genome can be viewed as a
sequence of genes. The local alignment of nucleotide
sequences or amino acid sequences is based on an optimization
procedure to detect locally similar subsequences using a
measure of similarity defined for pairs of nucleotides or pairs
of amino acids. In contrast, the local alignment of genomes is
used to detect locally conserved gene clusters using a measure
of gene similarity, which may be defined by the sequence
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similarity scores of gene pairs. While in the sequence alignment
problem the order of nucleotides or amino acids may not be
changed, genome alignment allows rearrangements of corres-
ponding genes. For example, when (A,A′), (B,B′), (C,C′) are
similar gene pairs, the genome alignment A–B–C and A′–C′–B′ is
a perfect match containing a reversal. Thus, local genome
alignment requires detecting clusters of similar genes that are
localized in two genomes. In the accompanying paper (14) we
developed a graph comparison algorithm to detect correlated
clusters of corresponding nodes, which is here applied to
dealing with the local genome alignment problem.

The purpose of the present analysis is two-fold. First, we
attempt to develop an automatic procedure to construct a
‘multiple genome alignment’ for conserved gene clusters.
Second, we report the construction of ortholog group tables in
KEGG (15) and the assignment of ortholog identifiers as an
extension of EC (enzyme commssion) numbers.

MATERIALS AND METHODS

The open reading frame (ORF) data of 17 organisms

The ORF data for 17 complete genomes were prepared from
the KEGG (Kyoto Encyclopedia of Genes and Genomes)
GENES database (http://www.genome.ad.jp/kegg/kegg2.html ),
which is compiled from the complete sequence data originally
released in GenBank. These comprise 12 bacterial genomes:
E.coli (16), H.influenzae (17), Helicobacter pylori (18), Bacillus
subtilis (19), Mycoplasma genitalium (20), Mycoplasma
pneumoniae (21), Mycobacterium tuberculosis (22), Chlamydia
trachomatis (23), Borrelia burgdorferi (24), Treponema
pallidum (25), Synechocystis PCC6803 (26) and Aquifex
aeolicus (27); four archaeal genomes: Methanococcus
jannashii (28), Methanobacterium thermoautotrophicum (29),
Archaeoglobus fulgidus (30) and Pyrococcus horikoshii (31);
one eukaryotic genome: Saccharomyces cerevisiae (32). The
KEGG/GENES database contains its own gene annotations
together with those annotated by SWISS-PROT, GenBank and
the original genome project teams.

In the present analysis we do not distinguish the strands on
which genes are located. Thus, the sequential order of genes is
defined by the smaller numbers of the gene positions in the
GenBank database, namely the first nucleotide positions of the
genes in one strand and the last nucleotide positions of the
genes on the complementary strand. We consider only protein
coding genes, excluding tRNA, rRNA and other RNA genes.

Pairwise comparison of genomes

A schematic view of the entire procedure of our automated
analysis is shown in Figure 1. There are three steps to compile
a multiple alignment of significant gene clusters among
multiple genomes: (i) extraction of conserved (correlated) gene
clusters in two genomes by the pairwise graph comparison
algorithm; (ii) identification of related gene clusters in multiple
genomes by P-quasi complete linkage analysis; and (iii) identifi-
cation of orthologous, paralogous and fused genes in each gene
cluster by the P-quasi and COG grouping methods to generate
gene cluster tables.

Here we define a conserved gene cluster as a group of
homologous genes that are located at contiguous positions in
the genomes of multiple organisms. In order to detect such

conserved gene clusters in two genomes, we first make a
similarity matrix of genes, which contains elements for all
possible pairwise comparisons of protein coding genes. The
genes are ordered on each axis of the matrix according to the
positions in each genome. The similarity of two genes is
defined by an amino acid sequence comparison using the
SSEARCH program based on the Smith–Waterman algorithm
(33). When the optimized (opt) score of SSEARCH is 100 or
more, the matrix element is 1; otherwise the element is 0. Thus,
the similarity matrix can also be viewed as a dot matrix for
comparison of gene orders in two genomes. A diagonal stretch
of ones in the matrix corresponds to a conserved gene cluster.
More generally, a conserved gene cluster appears on the dot
matrix as a local cluster of ones because it can contain
rearrangements of genes, such as inversions, transpositions,
fusions and fissions, as well as gaps (unpaired genes).

Figure 1. A schematic view of the entire procedure to extract conserved gene
clusters in multiple genomes. (Step 1) A gene cluster pair is a group of related
gene pairs that are located at contiguous positions in two genomes. An arrow
indicates the best hit or the bi-directional best hit relation by SSEARCH. The
similarity score of each gene cluster pair is defined by the smaller number of
related genes (linked by arrows) in one genome. Thus, multiple links to the
same node are counted just once. (Step 2) The cluster pairs are grouped by the
P-quasi complete linkage method. The numbers indicate the scores retained
from Step 1. (Step 3) Once a group of related gene clusters is obtained, the
second P-quasi and the COG methods are used to establish the relationships of
individual genes, including gene orders, orthologs, paralogs and fused genes.
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We apply the graph comparison algorithm (14) and detect
conserved (correlated) gene clusters containing at least two
homologous gene pairs, allowing rearrangements of gene
positions and allowing gap lengths of up to two in each
genome. The opt score of 100 in SSEARCH is a relatively low
threshold value, which produces a number of spurious hits. In
order to screen out the noise of such random occurrences of
small clusters, we count only those clusters that contain at least
two best hits. Here the best hit is the highest scoring gene pair
when one gene in one genome is compared against all genes in
the other genome.

Identification of related gene clusters in multiple genomes

Once all pairwise comparisons of 17 genomes, including self-
comparisons, are made, a set of conserved gene cluster pairs is
obtained together with a similarity score for each cluster pair.
We define the similarity score between two gene clusters as the
number of best hit gene pairs where multiple pairs involving
the same node are combined in order to avoid counting
paralogs more than once (see Fig. 1). Apparently this set
contains the same gene clusters that are shared partially or
entirely in multiple genomes when pairwise similarity links are
combined. We thus perform grouping of gene clusters based on
linkage of similar cluster pairs and compile groups of
conserved gene clusters among multiple organisms by a
clustering algorithm.

Generally speaking there are two representative clustering
algorithms: single linkage and complete linkage. When single
linkage is applied to our problem, many gene clusters tend to
be merged into a small number of large groups. In the worst
case, two unrelated clusters may be merged in the same group,
which makes it difficult to obtain a multiple alignment of gene
orders. On the other hand, complete linkage identifies only
small groups of uniform gene cluster organizations, which is
not suitable for detecting variations among species. In order to
produce moderately conserved gene clusters among various
species, we introduce the P-quasi complete linkage method
(34), which satisfies the condition that any member in one
group has linkages (similarity links) to ≥P% of all the members
within the group. When P is 100% each member is linked to all
other members in the group, which is equivalent to normal
complete linkage. In contrast, single linkage requires just one
link to any member in the group and P is virtually 0% when the
number of members in the group is large.

For the threshold of similarity links we consider that two
gene clusters are linked when two or more best hit gene pairs
are shared, thus avoiding weak cluster connections by only one
gene pair relationship. We have tried various percentage values
for the completeness parameter P, namely P = 0 (single
linkage), 20, 40, 60, 80 and 100% (complete linkage). It was
extremely time and memory consuming to compute P-quasi
completeness of gene cluster pairs for all the 17 organisms; it
took between 3 and 7 days, depending on the parameter P, on
a SGI Origin 2000 with 10 parallel CPUs.

Multiple genome alignment within a conserved gene cluster

The last step is to identify orthologous genes within individual
gene clusters and to make rough drafts of multiple genome
alignments, which are then manually edited to produce KEGG
ortholog group tables. Again, we use the P-quasi complete
linkage method to establish groups of homologous genes and

at the same time to detect fused or split genes. This is based on
the following criteria.
• Groups of homologous genes are defined by the P-quasi

complete linkage method within each gene cluster with an
opt score of 100 for the SSEARCH cut-off value and a
completeness parameter P of 20%.

• When one gene in a genome corresponds to more than one
homologous gene in another genome, it is considered to be a
fused gene if all the following four conditions are met:

(i) the gene has two or more homologs (opt score ≥ 100) in
another genome;
(ii) some of the homologs have no similarity (opt score < 100)
with each other;
(iii) the sum of the lengths of the non-similar homologs is not
much greater (<50 amino acids) than the gene length;
(iv) the similarity regions of the gene to the non-similar
homologs have small overlaps (up to 10 amino acids).
Otherwise, the homologs are assumed to be paralogs.
• Paralogs are further divided into different ortholog groups by

the COG (Cluster of Orthologous Groups of proteins)
triangle method (35) of linkages based on best hits.

RESULTS

Conserved gene clusters in pairwise genome comparisons

An example of the pairwise genome comparison is shown in
Figure 2, which is a dot plot representation of the similarity
matrix for all the protein coding genes between M.pneumoniae
and M.genitalium (Fig. 2a) and between C.trachomatis and
M.genitalium (Fig. 2b). Each dot corresponds to a SSEARCH
score of 100 or more for the pairwise comparison of protein
coding genes at the amino acid sequence level. Note that
diagonal stretches are often interrupted in a comparison of the
two closely related mycoplasmas because of the existence of
RNA genes, which are not excluded from the axes and whose
similarities are not examined.

Figure 2c and d shows the results of applying the graph
comparison algorithm to detect correlated clusters. Many dots
that exist in the SSEARCH result are screened out and only a
relatively small number of stretches are found for conserved
gene clusters in the two genomes. It is remarkable that the
conserved clusters of the two mycoplasmas are located almost
co-linearly on the two genomes, with one large chromosomal
translocation (21) and some additions and amplifications of
genes in M.pneumoniae (36). However, genomic rearrangements
are usually so extensive that such distinct co-linearity is not
found except for very closely related species, as exemplified in
Figure 2d. Here the longest stretch is a ribosomal protein
cluster, which is known to be one of the most conserved gene
clusters in all bacterial and archaeal genomes (see the KEGG
ortholog group tables listed in Table 1).

In the KEGG system we maintain precomputed SSEARCH
scores for all pairwise comparisons of completely sequenced
genomes. The dot plot analysis such as shown in Figure 2 can
be performed by the genome comparison tool (available at
http://www.genome.ad.jp/kegg-bin/mk_genome_cmp_java ).

In addition, a list of conserved gene clusters can be generated
for any pair of genomes by the graph comparison algorithm
(available at http://www.genome.ad.jp/kegg-bin/genome_cmp ).
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Fraction of genes in the conserved gene clusters

The fraction of genes in conserved gene clusters is obviously
dependent on the closeness of the species being compared.
Figure 3 shows variations of such fractions for all pairwise
genome comparisons in our dataset excluding S.cerevisiae.
The vertical axis shows the ratio of the number of genes in the
clusters to the total number of genes in the genome. Shaded
boxes and open triangles represent, respectively, the genomes
that have larger and smaller numbers of genes in the pairwise
genome comparison. The horizontal axis shows the phylo-
genetic distance between the two genomes measured as the
percentage difference in small rRNA sequences according to the
Ribosomal Database Project II site (http://www.cme.msu.edu/
rdp/ ).

Not surprisingly, the ratio of clustered genes decreases as the
phylogenetic distance between two species increases. The ratio

plateaus at a constant level of ∼8% when the phylogenetic
distance reaches 30%. It is apparent that many clusters are not
significant when the species being compared are too closely
related. Thus, we introduce a cut-off value for selecting
significant gene clusters that are conserved despite extensive
rearrangements of the entire genomes. In this study we
extracted only those clusters that were found in species with a
phylogenetic distance of 20% or more. This condition was
highly useful in eliminating apparent clusters that were found
only between close species, for example between M.genitalium
and M.pneumoniae or between E.coli and H.influenzae.

Conserved gene clusters in multiple genomes

The gene clusters that are conserved among multiple genomes
are obtained by merging related gene clusters identified in the
pairwise genome comparisons using P-quasi complete linkage
analysis. Obviously the number and the size of such clusters as

Figure 2. The dot plot matrices representing the sequence similarity results by SSEARCH (upper) and the conserved cluster search results by our algorithm (lower)
for pairwise comparisons of all protein coding genes between M.genitalium and M.pneumoniae (left) and between C.trachomatis and M.genitalium (right).

Table 1. Selected ortholog group tables in KEGG

Ortholog group URL

Ribosomal protein cluster http://www.genome.ad.jp/kegg/ortholog/tab01030.html

ATP synthase http://www.genome.ad.jp/kegg/ortholog/tab03110.html

Tryptophan biosynthesis http://www.genome.ad.jp/kegg/ortholog/tab00400.html

Glycolysis http://www.genome.ad.jp/kegg/ortholog/tab00010.html

RNA polymerase http://www.genome.ad.jp/kegg/ortholog/tab03020.html

NADH dehydrogenase http://www.genome.ad.jp/kegg/ortholog/tab03100.html

Pyruvate oxidoreductase http://www.genome.ad.jp/kegg/ortholog/tab03120.html

ABC transporters http://www.genome.ad.jp/kegg/ortholog/tab02010.html
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well as their quality are dependent on the parameter P, the
extent of completeness for linkage. Figure 4 shows the number
of conserved clusters in multiple genomes plotted against P,
where P = 100% corresponds to complete linkage and P = 0%
corresponds to single linkage. The number of clusters increases
as the extent of completeness becomes higher, from a
minimum of 1462 in single linkage to a maximum of 6825 in
complete linkage.

Although it was not possible to determine an appropriate
value for P from Figure 4 alone, the break at 60% appeared to
be a highest limit for the extent of completeness. Thus, using
values of 40 and 20% we examined how well known gene
clusters, including those shown in Table 1, could be repro-
duced by our method. Generally speaking, the optimal value
varied for different gene clusters. For example, the value of
40% was most suitable for F1-F0 ATP synthase and pyruvate
oxidoreductase, 20% was better for NADH dehydrogense and
peptide ABC transporters and either value was appropriate for
the largest ribosomal protein gene cluster and the tryptophan

operon. The manner of cluster conservation seemed to be
dependent, at least, on the conservation of individual genes (in
terms of amino acid sequence) and the number of paralogous
genes outside the cluster. In the following analysis we chose
the value of 40% as one of the acceptable values. We note that
in practice our computational results are used only as rough
approximations for the KEGG ortholog group tables, which are
refined by human experts with additional analyses.

Gene cluster tables

The results of identifying orthologous gene relations within
each conserved cluster are represented in the form of a gene
cluster table (Fig. 1), which may be considered as a multiple
genome alignment. A complete collection of gene cluster
tables obtained with P = 40 and 20% for the 17 genomes is
available at http://kanehisa.kuicr.kyoto-u.ac.jp/Paper/gclust/

Figure 5a shows an example of a gene cluster table, that for
the trp gene cluster for the tryptophan biosynthesis pathway,
which was obtained with P = 40%. The trp gene clusters in
nine of 13 organisms containing this pathway were identified,
with the exceptions Synechocystis, A.aeolicus and S.cerevisiae,
whose genes were dispersed in the genome. Figure 5b is the
corresponding ortholog group table for tryptophan biosynthesis
in KEGG (Table 1), which was originally constructed from
FRECs (functionally related enzyme clusters) analysis using
graph comparison of genomes and metabolic pathways (14)
and manually refined with additional analyses. While the current
automatic method performed relatively well, it obviously did not
detect orthologous genes that either did not belong to gene
clusters or had only weak sequence similarities.

The total of 2313 clusters obtained with P = 40% (Fig. 4)
contained 370 clusters that were considered not to be significant
because the phylogenetic distance was below the 20% threshold.
When the rest were compared with the KEGG metabolic and
regulatory pathway maps, ~27% of the significant clusters
contained at least two genes that also appeared on the KEGG
pathways. In some cases genes that were adjacent in the
genome, i.e. were in the gene cluster, were not adjacent in the
metabolic pathways. A case in point is the two glycolytic
enzyme genes (Table 1) 6-phosphofructokinase (EC 2.7.1.11)
and pyruvate kinase (EC 2.7.1.40), which form a conserved
gene cluster in several Gram-positive bacteria, but which are
distantly placed (six steps apart) in the glycolysis pathway.
This gene cluster is known to be critical in regulating the
overall direction of glycolysis or gluconeogenesis. In our
previous FRECs analysis (14) this particular gene cluster was
not detected because the separation in the pathway was above
the threshold of allowable gaps.

Fused genes

As can be seen in Figure 5, our method correctly identifies
fused genes and their orthologous relationship to other genes.
In fact, we assign orthologs in two steps: first by defining gene
clusters where just groups of possible orthologs are identified,
and second by generating gene cluster tables where more
precise relations are established. Both steps utilize sequence
similarities in pairwise genome comparisons, especially best
hits and bi-directional best hits, and positional correlations on
the genomes. In the second step we also examine the possi-
bility of fused genes according to the criteria given in Materials
and Methods. A number of cases are known where multiple

Figure 3. The percentage of genes in the conserved clusters relative to the total
number of genes in the genome when two genomes are compared. The percentages
for the larger (shaded boxes) and the smaller genome (open triangles) in the
pairwise comparison are plotted against the phylogenetic distance between the
two genomes according to the percent difference in small rRNA sequences.

Figure 4. The number of groups formed by merging related clusters is plotted
against the completeness parameter P in a P-quasi complete linkage analysis.
The parameter values of 100 and 0 correspond, respectively, to complete linkage
and single linkage.
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proteins encoded in operons in some organisms are fused into
single proteins in other organisms. A few examples from
Table 1 are bacterial RNA polymerase subunits β and β′,
which are fused in H.pylori, NADH dehydrogenase chains C
and D, which are fused in E.coli, and pyruvate:ferredoxin
oxidoreductase α and β subunits, which are fused in E.coli and
Synechocystis. The fusion (or fission) patterns are somewhat
more complicated for the genes of the tryptophan biosynthesis
pathway shown in Figure 5; there are three fusion events: trpC
and trpF in three proteobacteria, trpC and trpD in A.fulgidus
and trpD and trpG in E.coli.

DISCUSSION

The sequence similarity found in database searches is often the
basis of assigning gene functions. However, one of the major

problems in interpreting the search results is that there is no
predefined threshold of percent identity or similarity score that
assures functional identity. In fact, it is not simply the score
that matters, but many other additional factors need to be
integrated to come up with a conclusion, such as the class of
protein, the location of similar segments, the types of amino
acids conserved, the number of paralogs found and the
evolutionary distance between the species being compared. The
complete genome sequence provides additional constraints for
better interpretation of sequence similarity relations. For
example, when a pair of genes taken from different genomes
exhibits a bi-directional best hit relation, it is a good indication
of functional orthology, even if the sequence similarity score is
relatively low. Here bi-directional best hit means that when
one gene (or one set of paralogous genes) in one genome is
searched against all genes in the other genome, the other gene
(or the other set of paralogous genes) is the best hit, and vice
versa. The COG database (35,37) applies this criterion to three
distant species and attempts to classify all proteins in the
completely sequenced genomes.

In contrast, the collection of KEGG ortholog group tables is
not a functional categorization of individual proteins. Rather, it
is intended to provide more specific functional information
about cellular roles; how proteins interact with each other to
form a pathway or a molecular complex. As reported in this
paper, this type of higher level functional information is some-
times encoded in the genome as a gene cluster, which is
conserved among different species and which can be detected
by whole genome comparisons of both positional and sequence
information for genes. From a practical point of view of
systematically uncovering such functional information, we
have developed an automated procedure to detect and align
conserved gene clusters in multiple genomes based on two
graph algorithms. One is the algorithm to compare two graphs
and identify locally similar subgraphs called correlated clusters
(14); the other is the algorithm to find a graph feature called the
P-quasi complete subgraph (34). A complete graph is a fully
connected graph with each node linked to all other nodes,
while in a P-quasi complete graph each node is linked to at
least P% of all other nodes. In these graph analyses edges are
unweighted, as well as undirected. Thus, sequence similarity is
either present or absent according to a threshold similarity
score and also whether it is a best hit or not.

Most methods in computational molecular biology explicitly
utilize numerical scores in order to determine biological mean-
ings of sequence similarities, expression similarities and other
relations. For example, in hierarchical cluster analysis the
linkage of two clusters is determined by the shortest distance
(single linkage), the longest distance (complete linkage), or an
average distance among all pairwise distances (similarity
scores) between members of the respective clusters. Numerical
scores are definitely useful when the computational analysis
involves only a specific type of data. In general, however,
biological interpretation is an integrated process which
requires concurrent evaluation of different types of data. As we
have seen, the existence of a best hit or the presence of a
positional correlation can sometimes be more meaningful than
how high the similarity score is. We believe that it is better to
convert numerical scores into only ones and zeros in order to
evaluate different types of data in a common framework.

Figure 5. The gene cluster corresponding to the trp operon for tryptophan bio-
synthesis. (a) The gene cluster table computationally generated with P = 40%
and (b) the manually refined table as represented in the KEGG ortholog group
table. The columns in these tables represent groups of orthologous genes,
which are annotated with the KEGG pathway map numbers and similarity
weights in (a) and with the EC numbers in (b). The shading in (b) denotes
possible operon structures, which is better viewed by the coloring at the KEGG
web site (http://www.genome.ad.jp/kegg/ortholog/tab00400.html ). The gene
names in parentheses are alternative names, except for HP1280 which contains
a frameshift (no amino acid sequence). Eco, Escherichia coli; Hin, Haemophilus
influenzae; Hpy, Helicobacter pylori; Bsu, Bacillus subtilis; Mtu, Mycobacterium
tuberculosis; Ctr, Chlamydia trachomatis; Mja, Methanococcus jannashii;
Mth, Methanobacterium thermoautotrophicum; Afu, Archaeoglobus fulgidus.
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This abstraction is also relevant to our graph-based
approach. We are interested in understanding higher level
cellular functions that result from networks of interacting
proteins, rather than functions of single proteins, from the
information in the genome. We consider a huge graph of genes
or proteins as nodes which are linked by different types of
edges, including experimentally determined protein–protein
interactions, computationally derived similarity relations,
positional correlations of genes in the genome and many other
relations (38). We are trying to correlate structural features of
this graph, without considering weights for edges, to higher
level functions. Our graph-based approach, which is also a
logic-based approach, is an attempt to integrate different types
of data and knowledge towards automating, at least in part,
human reasoning steps.

At present there are about 70 ortholog group tables available in
KEGG. The metabolic pathway portion of the tables was originally
organized using the results of aligning genes from different
organisms against a conserved portion of the metabolic
pathway in a FRECs analysis (14). The present study has
expanded the original collection in several respects. It has
refined the existing tables by distinguishing different subunits
with the same EC (enzyme commission) number in an enzyme
complex and clarifying complicated relations involving fused
genes (see Table 1 for examples). It has also been helpful in
identifying new gene clusters that consist of non-enzyme
proteins. This has led us to introduce what we call ortholog
identifiers for categorization of functional homologs in KEGG.
We have been using the EC numbers for functional identifica-
tion of enzymes and enzyme genes, especially for mapping
genes in the genome onto gene products (enzymes) in the
pathway. Starting with KEGG release 14.0 in April 2000, this
mapping is to be done using the ortholog identifiers instead of
the EC numbers. Table 2 shows a few examples of ortholog
identifiers which are, at the moment, not associated with any
hierarchical classification such as the EC numbering system.
Because of the ortholog identifiers it is now possible to
computerize and utilize networks of interacting molecules,
including both metabolic pathways and regulatory pathways,
in a uniform way.

ACKNOWLEDGEMENTS

We thank Drs Kenta Nakai and Atsushi Ogiwara for helpful
discussions. This work was supported by a Grant-in-Aid for
Scientific Research on the Priority Area ‘Genome Science’
from the Ministry of Education, Science, Sports and Culture of
Japan and the Genome Frontier Project ‘Genetic and Molecular

Networks’ from the Science and Technology Agency of Japan.
The computational resource was provided by the Super-
computer Laboratory, Institute for Chemical Research, Kyoto
University.

REFERENCES
1. Tatusov,R.L., Mushegian,A.R., Bork,P., Brown,N.P., Hayes,W.S.,

Borodovsky,M., Rudd,K.E. and Koonin,V. (1996) Curr. Biol., 6, 279–291.
2. Watanabe,H., Mori,H., Itoh,T. and Gojobori,T. (1997) J. Mol. Evol., 44,

S57–S64.
3. Siefert,J.L., Martin,K.A., Abdi,F., Widger,W.R. and Fox,G.E. (1997)

J. Mol. Evol., 45, 467–472.
4. Tamames,J., Casari,G., Ouzounis,C. and Valencia,A. (1997) J. Mol. Evol.,

44, 66–73.
5. Dandekar,T., Snel,B., Huynen,M. and Bork,P. (1998) Trends Biochem. Sci.,

23, 324–328.
6. Overbeek,R., Fonstein,M., D’Souza,M., Pusch,G.D. and Maltsev,N.

(1999) Proc. Natl Acad. Sci. USA, 96, 2896–2901.
7. Lawrence,J.G. and Roth,J.R. (1996) Genetics, 143, 1843–1860.
8. Xu,Y., Murray,B.E. and Weinstock,G.M. (1998) Infect. Immun., 66,

4313–4323.
9. Davidson,J.N. and Peterson,M.L. (1997) Trends Genet., 13, 281–285.

10. Marcotte,E.M., Pellegrini,M., Ng,H.L., Rice,D.W., Yeates,T.O. and
Eisenberg,D. (1999) Science, 285, 751–753.

11. Tomii,K. and Kanehisa,M. (1998) Genome Res., 8, 1048–1059.
12. Kihara,D. and Kanehisa,M. (2000) Genome Res., 10, 731–743.
13. Ogata,H., Goto,S., Sato,K., Fujibuchi,W., Bono,H. and Kanehisa,M.

(1999) Nucleic Acids Res., 27, 29–34.
14. Ogata,H., Fujibuchi,W., Goto,S. and Kanehisa,M. (2000) Nucleic Acids Res.,

28, 4021–4028.
15. Kanehisa,M. and Goto,S. (2000) Nucleic Acids Res., 28, 27–30.
16. Blattner,F.R., Plunkett,G. III, Bloch,C.A., Perna,N.T., Burland,V.,

Riley,M., Collado-Vides.J., Glasner,J.D., Rode,C.K., Mayhew,G.F. et al.
(1997) Science, 277, 1453–1474.

17. Fleischmann,R.D., Adams,M.D., White,O., Clayton,R.A., Kirkness,E.F.,
Kerlavage,A.R., Bult,C.J., Tomb,J.-F., Dougherty,B.A., Merrick,J.M. et al.
(1995) Science, 269, 496–512.

18. Tomb,J.-F., White,O., Kerlavage,A.R., Clayton,R.A., Sutton,G.G.,
Fleischmann,R.D., Ketchum,K.A., Klenk,H.P., Gill,S. and
Dougherty,B.A. et al. (1997) Nature, 388, 539–547.

19. Kunst,F., Ogasawara,N., Moszer,I., Albertin,A.M., Alloni,G.,
Azevedo,V., Bertero,M.G., Bessieres,P., Bolotin,A., Borchert,S. et al.
(1997) Nature, 390, 249–256.

20. Fraser,C.M., Gocayne,J.D., White,O., Adams,M.D., Clayton,R.A.,
Fleischmann,R.D., Bult,C.J., Kerlavage,A.R., Sutton,G.G., Kelley,J.M.
et al. (1995) Science, 270, 397–403.

21. Himmelreich,R., Hilbert,H., Plagens,H., Pirkl,E., Li,B.-C. and
Herrmann,R. (1996) Nucleic Acids Res., 24, 4420–4449.

22. Cole,S.T., Brosch,R., Parkhill,J., Garnier,T., Churcher,C., Harris,D.,
Gordon,S.V., Eiglmeier,K., Gas,S., Barry,C.E. et al. (1998) Nature, 393,
537–544.

23. Stephens,R.S., Kalman,S., Lammel,C., Fan,J., Marathe,R., Aravind,L.,
Mitchell,W., Olinger,L., Tatusov,R.L., Zhao,Q. et al. (1998) Science, 282,
754–759.

24. Fraser,C.M., Casjens,S., Huang,W.M., Sutton,G.G., Clayton,R.,
Lathigra,R.,White,O., Ketchum,K.A., Dodson,R., Hickey,E.K. et al.
(1997) Nature, 390, 580–586.

25. Fraser,C.M., Norris,S.J., Weinstock,G.M., White,O., Sutton,G.G.,
Dodson,R., Gwinn,M., Hickey,E.K., Clayton,R., Ketchum,K.A. et al.
(1998) Science, 281, 375–388.

26. Kaneko,T., Sato,S., Kotani,H., Tanaka,A., Asamizu,E., Nakamura,Y.,
Miyajima,N., Hirosawa,M., Sugiura,M., Sasamoto,S. et al. (1996)
DNA Res., 3, 109–136.

27. Deckert,G., Warren,P.V., Gaasterland,T., Young,W.G., Lenox,A.L.,
Graham,D.E., Overbeek,R., Snead,M.A., Keller,M., Aujay,M. et al.
(1998) Nature, 392, 353–358.

28. Bult,C.J., White,O., Olsen,G.J., Zhou,L., Fleischmann,R.D., Sutton,G.,
Blake,J.A., FitzGerald,L.M., Clayton,R.A., Gocayne,J.D. et al. (1996)
Science, 273, 1058–1073.

29. Smith,D.R., Doucette-Stamm,L.A., Deloughery,C., Lee,H., Dubois,J.,
Aldredge,T., Bashirzadeh,R., Blakely,D., Cook,R., Gilbert,K. et al.
(1997) J. Bacteriol., 179, 7135–7155.

Table 2. Examples of ortholog identifiers in KEGG



4036 Nucleic Acids Research, 2000, Vol. 28, No. 20

30. Klenk,H.P., Clayton,R.A., Tomb,J.-F., White,O., Nelson,K.E.,
Ketchum,K.A., Dodson,R.J., Gwinn,M., Hickey,E.K., Peterson,J.D. et al.
(1997) Nature, 390, 364–370.

31. Kawarabayasi,Y., Sawada,M., Horikawa,H., Haikawa,Y., Hino,Y.,
Yamamoto,S., Sekine,M., Baba,S., Kosugi,H., Hosoyama,A. et al. (1998)
DNA Res., 5, 55–76.

32. Goffeau,A., Aert,R., Agostini-Carbone,M.L., Ahmed,A., Aigle,M.,
Alberghina,L., Albermann,K., Albers,M., Aldea,M., Alexandraki,D. et al.
(1997) Nature, 387 (suppl.), 1–105.

33. Smith,T.F. and Waterman,M.S. (1983) J. Mol. Biol., 147, 195–197.

34. Matsuda,H., Ishihara,T. and Hashimoto,A. (1999) Theor. Comput. Sci.,
210, 305–325.

35. Tatusov,R.L., Koonin,E.V. and Lipman,D.J. (1997) Science, 278, 631–637.
36. Himmelreich,R., Plagens,H., Hilbert,H., Reiner,B. and Herrmann,R.

(1997) Nucleic Acids Res., 25, 701–712.
37. Tatusov,R.L., Galperin,M.Y., Natale,D.A. and Koonin,E.V. (2000)

Nucleic Acids Res., 28, 33–36.
38. Kanehisa,M. (2000) Post-genome Informatics. Oxford University Press,

Oxford, UK.


