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ABSTRACT

A new modeling technique for arriving at the three
dimensional (3-D) structure of an RNA stem—loop has
been developed based on a conformational search by
a genetic algorithm and the following refinement by
energy minimization. The genetic algorithm simulta-
neously optimizes a population of conformations in
the predefined conformational space and generates
3-D models of RNA. The fithess function to be
optimized by the algorithm has been defined to reflect
the satisfaction of known conformational constraints.
In addition to a term for distance constraints, the
fitness function contains a term to constrain each local
conformation near to a prepared template conforma-
tion. The technique has been applied to the two loops
of tRNA, the anticodon loop and the T-loop, and has
found good models with small root mean square
deviations from the crystal structure. Slightly different
models have also been found for the anticodon loop.
The analysis of a collection of alternative models
obtained has revealed statistical features of local
variations at each base position.

INTRODUCTION

To cope with this situation, computer modeling is becoming a
substitute method for the analysis of 3-D RNA molecular
structures [for review se8){. Molecular modeling aims to find
the 3-D structures of RNA that satisfy the structural information
obtained by various methods such as electron microscopy,
neutron scattering, low resolution X-ray and NMR analysis,
site-directed mutagenesis, crosslinking, chemical and biochemi-
cal probing, phylogenetic comparison and secondary structure
prediction by free energy minimization. The constructed models
are considered to be useful for the design of further experiments.

Manual or interactive modeling techniques have been utilized
to propose 3-D models for 16S rRNEO(11), 5S rRNA (2,13),
tRNASE' (14), group | intron {5-17), U1 snRNA (8) and
tetraloops 19). Although the manual approach has been popular,
it is dependent on the decisions of experts who construct RNA
structural models. Therefore, several automatic modeling tech-
nigues have recently been proposed. One employs the distance
geometry algorithm to fold pseudo atoms representing RNA
molecules 20,21). Another systematically searches the con-
formational space by building up nucleotides in a discrete
nucleotide conformational se&tZ-24). Conventional molecular
mechanics calculations have also been employed for automatic
modeling of RNA 25-29). Here we present a new automatic
modeling technique suitable for RNA stem-loop structures and
its application to the two loops of tRNA.

The main stage of any automatic computer modeling technique

RNAs perform a wide variety of biological functions such ass a conformational search procedure or model building phase.
self-cleaving reactions of ribozymes, protein synthesis by rRNA&e have developed a conformational search program based on &
and recognition of aminoacyl-tRNA synthetases by tRNAsgenetic algorithm. Genetic algorithms (GAs), which mimic the
These functions should be understood not only on the basisraftural selection in evolution and efficiently search the combina-
their primary sequences and secondary structures, but ultimatedyial space 30,31), are recently gaining recognition as an

on the basis of their three-dimensional (3-D) structures. Thmportant tool for conformational search of biological macro-
analysis of RNA 3-D structures is indispensable to clarify theolecules32). Lucasiugt al.(33) used a GA to determine DNA

structure—function relationships and the evolution of RNAs.

structure from an NMR NOE table. We used their way of variable

X-ray crystallography and NMR spectroscopy are powerfuinapping. Dandekar and Argo34f reported a GA simulation
experimental methods for the determination of protein structuretudy on the folding of a fofd stranded bundle. GAs have the
at the atomic resolution. Thus far, however, neither method haspects of both probabilistic and heuristic search algorithms. The
been powerful enough for the analysis of RNA structures. OnbBfficiency of this duality was demonstrated by Unger and Moult
the structures of tRNAsL{4) and short synthetic RNAs have (35) in the study of two dimensional folding simulations by both
been determined by X-ray crystallography. Recently the struGA and Monte Carlo simulations. Sut) also employed a GA
tures of tetraloops(6) and a three-nucleotide hairpin loof) ( for protein folding prediction with a reduced representation
have been determined by 2-D NMR spectroscopy. Nikon@wicz model.
al. reported that they were applying 3-D heteronuclear NMR The description of the backbone conformation of a single

study to hammerhead catalytic doméih Overall, our knowl-

edge on RNA 3-D structures is quite limited.

nucleotide requires six dihedral angles, which is to be compared
with only two for an amino acid in the protein backbone. Thus,

* To whom correspondence should be addressed
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the conformational space is expected to be enormous, even fc ot

short RNA. Furthermore, it is often the case that the constrair o

available are too limited to determine a unique structure, so v =X

have to somehow put restrictions to the search space. In fe "’::IXE-

manual modeling technique usually limits the conformatione o . 5
space of local segments by choosing one appropriate conforn s sty s B ,_{' 5
tion from a collection of conformation87). One of the novel ~— & —— & == & @3- @G- & g gr Sge
aspects of the modeling technique reported in this paper is that o maclentide ot ,_
fitness function to be optimized by the GA has a term to stabiliz s poaen| i

each local segment near to a predefined conformation, in addition

to a term to satisfy the distance constraints given by experiments

or sequence analysis. Figure 1. Seven variables describing the nucleotide conformation and the
In the present study we focus our analysis on the stem—logjgfinition of the segment.

structures which often correspond to functionally important sites.

Thus, we adopt an atomic resolution model for local folding,ighles instead of the above seven variables, there would have
patterns of RNA molecules. In comparison, pseudoatom repigaen 5 9-fold increase in the number of variables required. We
sentation might be recommended for global RNA foldingynay7ed the values of the seven variables that were actually taken
problems, such as helix packing of rRNA. Our GA basegh ihe known RNA structures in the Brookhaven Protein Data
conformational search technique has been tested for the two logg,c 39). As shown in the outside ring of Figithe observed
of tRNA. values are localized in some limited ranges. Thus, in the stage of
the GA search described below we restrict the sampling of the
MATERIALS AND METHODS values to these ranges; specifically, each of the seven variables
randomly changes its value in the respective range.

It may often be the case in molecular modeling that some parts
In an atomic resolution model of RNA, covalent bond angles araf RNA are known or assumed to take specific conformations. So,
lengths are treated as constant. The conformation of a singlés necessary to add conformational constraints to local segments
nucleotide is defined by the seven varialieg, v, €, {, x and  of generated models. We define a segment as a part of RNA that
P (Fig. 1). The pseudorotational phase arfgldescribes sugar is composed of a nucleotide, '‘Ca8nd O3 atoms of the
puckering and defines dihedrals in suggrby the following 5'-neighboring nucleotide and P atom of tHen@ghboring
equation 898): nucleotide (Figl). Two adjacent segments therefore share three

) atoms.
v, = vmaxco{P + W]

Definition of variables and a segment

1)

Local conformations of double helices and single

wherei = 0—-4 and the pucker amplitude is assumed to be constasht{,a nded loops

Vmax = 38 . Dihedrals in sugay;, are used for the generation of Since double helices of RNAs are found only in the A-form, the
atomic coordinates. If Cartesian coordinates had been usedcasformation of a Watson—Crick base-paired stem is fixed

p— Y

i

Figure 2. Observed values of the seven variables that are actually taken in the known RNAs (blue outer ring). The data set taken from the Protein Data Bank
composed of 4TNA (tRNB'9, 2TRA (tRNAASP), 10FX (hybrid RNA/DNA duplex), 1BMV (single stranded RNA from virus), 2TMV (single stranded RNA from
virus) and 1RNA (RNA duplex), which included 194 ribonucleotide units. At the stage of the GA search, each variable randomly takes discrete values within the
and light blue areas. In order to show the actual sampling range, the values taken in the 2000 GA-optimized models and the 72 accepted models for the first se
of the anticodon loop are shown in the green and red inner rings, respectively. The blue and red triangles indicate the values in the crystal structure and the fittest
respectively.
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throughout our modeling process to the idealized A-RNA. Theuperposed to the known ones by Kabsch’s mettipdl], and
actual A-form conformation was generated with Insight/Discovehe root mean square distariReg , of all atoms in the segment

(Biosym Technologies). is calculated. TheRgegis given by:
General knowledge about the structure of single stranded loops
is not abundant, which is why we focus the search on stem—loop Fseg = Z Wy Fg @)

structures. In this study, every segment conformation in a loop is
assumed to be stabilized near to A-segment conformation, tgﬁd
conformation of the segment in the ideal A-RNA (see Dis-

cussion). It should be noted that even if every segment Rms — Rmg

conformation in a loop is constrained near to A-segment in the gk _ T Rms 0 SR Rmi <R Rmg) (®)
search, the conformational space of the entire loop structure is ~ **° 0 (Rmg =< Rmx) ’
enormous.

Fitness function for the evaluation of model structures whereRmgC s the cut-off value of this term angis the weight

. _ o _ for thek-th segment constraint.
The evaluation function to be optimized is usually called the

fltness function in GAs. By gradl_JaIIy optimizing or MaxiMIZINg tapje 1. Atom species for which the repulsion forces are calculated
the fithess values for a population of conformations, we try to
obtain desirable conformations. Our fitness function consists of
the three terms:

Atom species

main chain and ribose O5 o3 Cr

F = Fap * Freper T Fseg (2)  Adenine c2 NG cs

Cytosine 02 N4 C6

representing the distance and positional constraints, the stere@ganine N2 06 c8

chemical constraints of atomic collisions and the local com‘orma(Jra
tional constrains over the segments.

The first term of Eq. (2), which evaluates the extent of
satisfaction in distance or position constraints, is given by:

cil 02 04 C6

Genetic algorithm based conformational search

Fop = Z Wi Fop (3)  The fitness function defined above is gradually optimized by the
search procedure employing the concept of GAs to find desirable
and conformations. In the field of GAs, candidates of solutions kept
in the system is named individuals. Our GA based search

Diff~l—'0Diff° (0 < Diff, < Diff¥) algorithm starts witN individuals; that is, the starting population

o) i Diff' < Diff. < Diffc containdN conformations. By randomly changing and mixing the

Fl, = ; ;. (Diff] j D, (@) _ m \ \

p Diff! 6 Diff (Diff¢ < Diff) variables describing conformations, a new population of con-

formations is generated (genetic operation). Thémdividuals

are selected in accordance with their fithess (selection and
whereDiff; is the violation of theth constraintDiff;u andDiff,c ~ creation of new generation). Iterating these two processes, we
are the upper limit and the cut-off value of tkt constraint, Obtain conformations with higher fitness values.

respectively, andj is the weight for the constraint. The _conformatlon _of RNA is determmed unlquel_y by the
The second term of Eq. (2), a simplified repulsion force, igoll_ectlon of nucleotlde. conformatl_ons, each of which is de-
given by: scribed by the seven variables mentioned above. In the conforma-
tional search, a variable is assumed to ttethi¢s of discrete real
Frepel = Wrepe|z Firepel , (5) Vvalues. Thus, when bits are assigned to each variable, the

conformation of RNA consisting é&fnucleotides is represented
by 7kn bit string. This long bit string is called a ‘chromosome’.

and In GAs, a method called Gray coding is often used for a way of
I mapping between a decimal number and a bit string. If the

F - lR O=r<R) 6 difference of two decimal numbers is one, the corresponding bit

repel 1J (R=r) (6) strings can differ by several bits in the binary codes, but they

always differ by one bit in the Gray codes. So it is easier for the

Gray codes than the binary codes to move around adjacent values.
wherer; is the distance between thth pair of atomsk is the In each generation of the Gl chromosomes are kept and they
sum of van der Waals radii of the two atoms @ngheiis the  undergo two types of genetic operations: ‘mutation” and ‘cross-
weight of this term. The repulsion force is calculated when thaver’. A mutation operation corresponds to random changes in
two atoms listed in Tableare in different nucleotides. variables.N chromosomes are copied as parents and they are

The last term of Eq. (2) enables to restrict each segmesiibject to mutation operations. First an individual is randomly

conformation. If thek-th segment is assumed to take a knowrselected from thegé copies. Then a position of its chromosome
conformation, the atomic coordinates of tkéh segment is randomly selected for a point mutation, which may result in a
generated in the process of the conformational search ameange of the bit. This process is iteratedridgimes. After the
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mutation operation cycle, the total population size in the pool of Andicadon loop T-loop
chromosomes becomei.2 . ks e
A crossover operation is to mix parts of two chromosomes to G a G U
generate a new one. In this study, one-point crossover is adopted. L 1 u / i
One pair of chromosomes is selected frashchromosomes © Ii_| FE
generated by the mutation operation. One crossover point is o b U di Cyy
selected from the joints of the variables assigned on the G G i e
chromosomes and left or right part of the two parents are L~ =i el e
exchanged. The fittest of the two sons brought by one crossover e i i
operation is added to the pool of chromosomes. The crossover G o A0
operation is considered to be the most important procedure in *In--- } = E.I

GAs, which is absent in other conformation search algorithms :
such as Monte Carlo simulation and simulated annealing. The
crossover operation Is iteratedimes. After this operation, the Figure 3. Structural information adopted for the anticodon loop and the T-loop
total population in the pool of chromosomes becorhkes @ calculations. Stacked bases are indicated by bold letterspositional

From the pool of chromosomes of parents and shins, constraint+: reverse Hoogsteen base-pair. This information is transformed to
chromosomes are selected according to their selection probatfn-e constraints between atoms (Table 2) in the conformational search process.
ities. The selection probabilitg of the i-th chromosome is

defined as: Table 2.Distance constraints representing the structural knowledge

o = Fi — Fmin arm S'-base 3'base  atom n S-base atomin 3-base  distance ()
i 1 anticaxlon som G A NI N7 KX
Z(FI - Fmin) (9) N3 NT 3.3
[0 NT 3.4
. . . . A A N1 N? ih
whereF; is the fitness of theth chromosome anB, is the N N7 13
fitness of the chromosome that has the least fitness in the pool of stacking; s N7 3.4
chromosomes. A G NI N7 36
We iterate these genetic mutation, crossover and selection b N 3
procedures until we obtain conformations with reasonable fitness N - E’ f“ 1‘:
or until a predescribed number of generations is reached. The N3 . P
computer program is written in C, and it is executed on a Sun N3 o3 a3
workstation. T-am G i N3 NI 37
M3 N3 42
N3 o3 3.4
Refinement by energy minimization {stauking) v u m N1 37
oz N3 4.4
The model conformations obtained by the GA search are then [a7) cs 3.5
refined by the energy minimization in vacuum to remove steridrevse Hoogsteen u A o2 Na 25

base-pair) N3 N7 2.9

hindrances. Using CHARMmMA4p) 200 cycles of steepest
descents minimization are followed by 1000 cycles of adopted

basis Newton—Raphson minimization with a distance-dependent ]

dielectric constantefy = 4r). SHIFT function and SWITCH stacking assumption of the bases G53, U54 and US55, and the
function available in CHARMm are used as smoothing functionf&verse Hoogsteen base-pair between U54 and AS58. This
of the Lennard—Jones potential and the electrostatic potentigfise-pair could be detected by phylogenetic compa#gpar(d
respectively. The stem regions are fixed in all minimizatiofoW resolution NMR spectroscopyi{46). All the structural
procedures. The calculation is carried out on a supercomputéformation described here was also used in the loop modeling by

CRAY Y-MP2E. Major et al. (22). _
The knowledge on the base stacking and the reverse Hoogsteer

base-pair is incorporated in the first term of Eq. (2) as distance
constraints between pairs of atoms (TaB)e Taking into
consideration that the stacking pattern is characterized by the
polar group of one base superposed over the aromatic system of
Our technigue was tested on the anticodon arm and the T-arntlod adjacent bas8§), the atom pairs representing base stacking
tRNAPhe Each of the arms consists of a five base-paired stem awere selected as shown in TaBlend the distances were taken

a seven nucleotides loop (FR). For simplicity, modified bases from the ideal A-RNA. The constraints concerned with the
were replaced by their metabolic parents. The anticodon loopresverse Hoogsteen base-pair were given from the data of
involved in the inter-molecular interaction with mRNA and thehydrogen-bonding distance determined by neutron diffraction
T-loop in the intra-molecular interaction with other parts 0{38). The repulsion force, the second term of Eqg. (2), was
tRNA. In the case of the anticodon loop modeling, the fiveonsidered for the atoms in the seven nucleotides of the loop and
nucleotides, G34, A35, A36, G37 and A38 were assumed to rethe two nucleotides of the stem (A31 and U39 for the anticodon
stacked. This structural information had been proposed before gtem; G53 and C61 for the T stem). The position of the P atom of
X-ray crystal structure was solve#3]. The structural informa- the last nucleotide in the loop is restricted by the position
tion adopted for the T-loop modeling consisted of the basmnstraints of the first term of Eq. (2).

RESULTS
Modeling of tRNA stem—loops
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Figure 4. The model structure of the lowest rmsd (yellow) in comparison with the crystal structuredgpibe)aticodon loop antd)(the T-loop. The two pyrimidine
bases of U59 and C60, which project out on the left tip of the T-loop, were in agreement with the crystal structure.

The initial structures of the two loops were taken as ideabot mean square violations of the upper libif§Y in Eq. (2)
A-RNAs, which completely satisfied the local conformationalnd of the sum of van der Waals rdgliin Eq. (3) must be lower
constraints as specified by the third term of Eq. (2). Atomithan 0.15 A. (iii) The distance of up to 2.5 A was permitted for
coordinates of the loop were generated successively from ttihe loop closure between @8 the last nucleotide of the loop and
5'-end of the loop, so for example, A38 and U39 of the anticodd? of the 3-neighboring nucleotide in the stem.
loop were not closed in the initial structure. These criteria reduced the number of model structures to 72 for

Seven hits were assigned to each variable in the chromosothe anticodon loop and 148 for the T-loop. The accepted models
representation. As such, each variable could take 128 differemere then subject to refinement by energy minimization.
values in the predefined range. Since a nucleotide conformation
is defined by seven variables, its conformational space is of tpe,
order of 184 We expect this search space would be sufficient for
a rough global searchiff{y andRmgC were set to 0.1 and 2.0 A, The refined model that was closest to the crystal structure is shown
respectively. The sum of the radii of two atoRysyas set to 3.0 in Figureda for the anticodon loop and in Figdtefor the T-loop.

A. With the exception oDiff{¥, Rmg® andR, the parameter For the anticodon loop, the root mean square distance (rmsd) was
values were adjusted in order to obtain acceptable models (3681 A for all atoms, 1.63 A for the main chain atoms, 1.52 A for
below). ThereforeDiff;® was set to 20 A. The weights for the the phosphorus atoms, and 1.46 A for the glycosylic nitrogen
three terms of Eq. (2) were 25, 40 and 1, respectively. Thaoms. This best model ranked at the 22nd in terms of the fitness
populationN was set to 20, the number of mutation operations values of the 72 accepted models; namely it was not the fittest. For
was 20 (mutation rate was 1 bit/individuajeneration) and the the T-loop, the rmsd was 1.76 A for all atoms, 1.37 A for the main
number of crossover operatioosvas 4. One trial of the GA chain atoms, 1.28 A for the phosphorus atoms, and 1.42 A for the
search was set to 2000 generations, and 100 trials with differghgcosylic nitrogen atoms. The best model was the 72nd in terms
random number seeds were performed for each of the anticodafrihe fithess values of the 148 accepted models. For comparison,
loop and the T-loop. The individual with the highest fitness wathe algorithm by Majoet al. found models with the rmsd of 2.00
always selected as a constituent of the next generation (elitfsfor the anticodon loop and 2.35 A for the T-loag)(

model). The calculation time for one GA search w&s c.p.u. Why was the best crystal-like structure not the fittest? First of all,
min on a SPARCserver 690. 2000 ¢000) model structures the structural information adopted to this test may not have been
were obtained after the calculation for each of the two loops. adequate to reconstruct the crystal structure. Secondly, the distance

We then identified acceptable model structures for furthesonstraints in Tablg may not have been sufficient to describe the
refinement analysis by the following three criteria: (i) Only onestructural information. In any event, we consider that the GA based
model was selected from duplicates of the same models. (ii) Thbal search must have covered an extensive conformational

mparison with the crystal structure
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Table 3.Comparison of the accepted models and the crystal structure

fung mode] Nuruber Rl (43
of models All mudn shain P glveosyl-N
Antzcaden loog Aimepled 71 X1 393 ERY| 310
Best 1 181 Lai [5Z 1.46
Muan 1 324 EEH 328 255
T-toop Auuepled 3 i43 17 Az 1.84
Brast | .75 1.57 125 42
Mlzan 1 1M 257 1410 1.63

space to find a crystal-like structure among the accepted models.

The wide sampling range covered by the search can be seen in

Figure 2 for the first segment of the anticodon loop in the

GA-optimized 2000 model structures and the 72 accepted models.
The mean rmsd between all the energy-minimized models and

the crystal structure is presented in T&litegether with the rmsd

for the best model. In addition, we computed the mean structure

by averaging the coordinates after superposing all the refined

models. The rmsd between this mean structure and the crystal

structure is also presented in TaBleThe glycosylic nitrogen

atoms had lower rmsd than phosphorus atoms for both the loops.

It might be because the distance constraints adopted in the test

restrain the atoms in the bases more than those in the main chain.

The correlation coefficient between the refined energy valueand b

the rmsd was 0.45 for the anticodon loop and 0.49 for the T-loop.
Table3 also indicates that the models for the T-loop are closer

to the crystal structure than the models for the anticodon loop. The

crystal structure of the anticodon loop is actually closer to the

A-form than that of the T-loop. The mean rmsd between segments

in the crystal structure and the A-form segment is 0.55 A for the

anticodon loop and 0.87 A for the T-loop. So the A-form

constraints over the segments would have been advantageous for

the anticodon loop rather than the T-loop. However, the long

range constraints of the reverse Hoogsteen base-pair seem to have

decreased the flexibility of the conformation of the T-loop. In fact,

for the anticodon loop quite different structures that satisfy the

five base stacking constraints were found in the models5)Fig.

One of them had a different stacking pattern, six base stacking on

the 3 strand. A structure with the loop bent over the major groove

was also found. In contrast, there were no noticeably different

models for the T-loop.

Statistics of model structures

The accessible surface aréd)(is an index characterizing the

environment around ato.mlc groups. In F|g_ﬁiaeand b the mean igure 5. There were some variations of the model structures of the anticodon
and th_e standard deviation of the accessible surface ar_e_as of . @ A model for the anticodon loop with six bases stacking from U33 to
bases in model structures are plotted for each base position of thes. The model satisfies stacking constraints over the five basésmodel

loop compared to the accessible surface area in the crystfat the anticodon arm with the loop bent over the major groove.

structure. Overall, the values were in agreement with the crystal

structure. This suggests that the environment of the bases that

were not constrained by base stacking or base pairing could dnerestimated. The prediction for C56 and G57, which have no
determined from the structural information of other bases. Fdistance constraint, are also good.

example, U59 of the T-loop has high accessibility and is exposedn order to estimate the fluctuation or ambiguity of the atomic
in the crystal structure. U59 and C60 take a similar structure obordinates, the root mean square deviations from the mean
bulges that loop out of the duplex, because of the adjacesdordinates were computed for each of the P atoms and the
base-pairs of C61-G53 (Watson—Crick) and A58-U54 (reverggycosylic nitrogen atoms (Figc and d). The values were
Hoogsteen). No distance constraints were adopted for thislatively small for the bases with stacking and/or base-pairing
pyrimidine. The predicted mean accessible surface area is clasmstraints: A35, A36, G37 and A38 in the anticodon loop and
to that of crystal structure, although the value for C60 i&J54, US55 and A58 in the T-loop. The base G34 of the anticodon
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) i3 space can be very extensive even for short RNAs and the target
function to be optimized is usually multimodal, the multiple
minima problem is inevitable. In the modeling of two loops of
tRNA, each of which consists of seven nucleotides, 7 bits were
assigned to each of the seven variables. Since each variable car
take Z different values, the search space is abd9P1BAs have

been considered more promising to overcome the multiple
minima problem than other probabilistic search algorithms,
which we consider to be confirmed by the successful application
to the 3-D molecular modeling of tRNA loops.

In this study, a conformation of an RNA was defined by the
internal coordinates: six dihedral angles and the pseudorotational
phase angle. The Cartesian coordinates of atoms can define a
conformation of an RNA as well. However, the choice of the
internal coordinates is better for the GA because random changes
of variables by the genetic operation often result in unrealistic bond
lengths and bond angles when the position vectors are the variables
v describing a conformation. Moreover, the choice of internal
Bt = i coordinates system reduces the number of variables by one ninth.

The point mutation operation is implemented here to change the
) ) variables in the internal coordinate system, which then affects the
Flgl_Jre_ 6. The accessmle_ surface area of the bases and the root mean SQUBnformation of an RNA. Instead, the conformation of a segment
deviations of glycosyl nitrogen and phosphorus. In the upper panels, the . . - .
accessible surface area is plotted versus each base posititheriticodon could be the direct target _Of mutation operations. This approac_h has
loop and ) the T-loop. The mean and standard deviation of the model structure@n  advantage of reducing the search space, when variables
(solid line) in comparison with the crystal structure (dotted line). In the lowerdescribing the conformation are highly correlated and also if
et ey o Shecpeni. o e o e s coouoons e porsgierent conformations can be properly weighecl. However, we
gor (c) the amicogon Igop and)(the T-loop. Five base stacking (G34,A35,A%6, id not take this aPpmaCh- Hundreds of X-ray crystal StrUCt_ure_s
G37, A38) in the anticodon loop, and two base stacking (U54, U55) and 41ave been determined for proteins, and the strong correlation is
base-pair between U55 and A58 in the T-loop were assumed in the calculationsbserved betweagmandy in the Ramachandran map. In contrast,
the structural knowledge about nucleotide units in large RNAs is
very limited, since only a handful of RNA structures have been
loop, which had stacking constraints, was more ambiguous theétermined and since the nucleotide backbone unit has the freedom
the other bases with stacking constraints. This is consistent withmparable to three amino acid residues. Thus, it is more difficult
the finding of a bent loop model (Fib). This indicates that the to define a set of favorable conformations for nucleotide units than
local constraints of the base stacking alone could not determifi@s amino acid residues. Exploring the preference of nucleotide
the global conformation of the anticodon loop and, converselgpnformations remains important and interesting work.
the information of long range interaction was important for the The basic idea of constructing the fitness function is automating
determination of local structure. experts’ knowledge and manipulation. Our fitness function
contains two types of constraints: the global constraint on
DISCUSSION inter-atomic distances and the local conformational constraint
over segments by template superposition. Although the latter

A single stranded region of RNA such as a hairpin loop or a bulgenstraint may be transformed to the former, itis more convenient
loop often participates in the interaction with other molecules. The have it separately. In manual modeling, an expert will build up
loop structure tends to be strongly dependent on its sequenceRINA models by consecutively choosing an appropriate segment
comparison with the Watson—Crick base-paired region which tenttom a collection of conformations and adding small changes to
to be standard helical A-RNA. Different structural elementghe conformation selected. These changes are necessary for large
formed by loops may be responsible for functional diversity ansampling of the search space; if segments attached are rigid,
specificity of RNAs. For example, coat proteins of R17 afd Qsampling will be very sparse. The third term of Eq. (2) mimics this
have specific interactions with RNA hairpid§,49). The HIVrev  manipulation not by hand but by a numerical form. The
protein recognizes RNA stem-loop and activates specific getransformation of experts’ knowledge on structures into atomic
expressionq0). Also the HIVtat protein interacts witkar RNA,  distance representation is intricate and laborious. We represented
which contains hairpin and bulge, and activates the expressiontloé structural information by the first term of Eq. (2) and Table
HIV genes $1). A 3-terminal stem-loop of histone mRNA is This should be considered a first step toward identifying
considered to be essential for the post-transcriptional coupling stfuctural data and representing them in numerical forms. Further
histone mRNA levels to DNA synthesis in mouse fibrobl&sis (  development remains to be our future work.
Many conserved tetraloop caps are observed in rRISA The The segments in the anticodon loop and the T-loop were assumed
analysis of loop structures may throw light on the generab take A-segment-like structures and A-segment constraints were
properties of RNA structures and the expression of RNA functionapplied in this study, because a lot of works support this assumption.
We proposed a technique for the 3-D modeling of RNA-rom the analysis of crystal structures of nucleotides, the similarity
stem—loops. The conformational space that satisfy the givewith the local structure of A-RNA was indicateB4), Single
structural information is searched by a GA. Because the seassttanded RNAs have long been known to take A-RNA-like
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conformation in aqueous solutioB5]. Since apurinic acids also 11

Stern,S., Weiser,B. and Noller,H.F. (1988\ol. Biol, 204, 447-481.

have the same property, the main chain interaction is considered 4o Westhof,E., Romby,P., Romaniuk,P.J., Ebel,J.-P., Ehresmann,C. and

be responsible for the right handed helical propensity of nuclej
acids rather than the base stacking interacti@). ith this

background, Kajava pointed out that A-RNA was appropriate for the
initial structure for modeling of tetraloop$9. When a single

stranded region of RNAs has interaction with other moledules 12
vivo, its local structure may not take A-RNA-like structure. The,,
analysis of crystal structures of nucleotide—protein complexegs
however, revealed that the conformation of the nucleotides is not
significantly different from the free state}. 19

Ehresmann,B. (1989) Mol. Biol, 207, 417-431.

) Brunel,C., Romby,P., Westhof,E., Ehresmann,C. and Ehresmann,B. (1991)

J. Mol. Biol, 221, 293-308.

Dock-Bregeon,A.C., Westhof,E., Giege,R. and Moras,D. (1D88pI.
Biol., 206, 707-722.

Michel,F. and Westhof,E. (199D)Mol. Biol, 216, 585-610.

6 Jaeger,L., Westhof,E. and Michel,F. (1921)ol. Biol, 221, 1153-1164.

Benedetti,G. and Morosetti,S. (1991Biomol. Struct. Dyn8, 1045-1055.
Krol,A., Westhof,E., Bach,M., Luhrmann,R., Ebel,J.-P. and Carbon,P.
(1990)Nucleic Acids Resl8, 3803—-3811.

Kajava,A. and Ruterjans,H. (1998)cleic Acids Res21, 4556—-4562.

The GA based search is rather rough and does not aim at a Io;t‘i’alH“bbard'J-M- and Hearst,J.E. (19Bichemistry30, 5458-5465.

search. In fact, the GA accepted models sometimes had stejjc

hindrances because of the simplicity of the fitness function an
the nature of non-differential search of the algorithm. Therefore3
we combined the global search by the GA with a local search %X
the energy minimization. This strategy of combining global an

local searches is not new, but we think our results were obtaingd

largely by the new global search algorithm. The results indicate
that the structural information adopted for the T-loop modelingé
was sufficient to predict the atomic coordinates, at least, of the
glycosylic nitrogen atoms. In addition, the analysis of alternati

models revealed the local variation of each base as shown,i

Figure®. It is one of the purposes of the automatic molecular
modeling to get this kind of statistical information. It is difficult 30
to obtain statistical features from manual modeling which handles
one single structural model at a time. s

The technique reported here is able to deal with other types-gf

Hubbard,J.M. and Hearst,J.E. (1991Mol. Biol, 221, 889-907.
Major,F., Turcotte,M., Gautheret,D., Lapalme,G., Fillion,E. and
Cedergren,R. (1998cience253 1255-1260.

Gautheret,D., Major,F. and Cedergren,R. (199B)ol. Biol, 229,
1049-1064.

Major,F., Gautheret,D. and Cedergren,R. (1998}. Natl. Acad. Sci.
USA 90, 9408-9412.

Mei,H.-Y., Kaaret, T.W. and Bruice, T.C. (1983pc. Natl. Acad. Sci. USA
86, 9727-9731.

Malhotra,A., Tan,R.K -Z. and Harvey,S.C. (1986)c. Natl. Acad. Sci.
USA 87, 1950-1954.

Veal,J.M. and Wilson,W.D. (1991) Biomol. Struct. Dyn8, 1119-1145.
Yao,S. and Wilson,W.D. (1992) Biomol. Struct. Dyn10, 367-387.
Gabb,H.A., Harris,M.E., Pandey,N.B., Marzluff, W.F. and Harvey,S.C.
(1992)J. Biomol. Struct. Dyn9, 1119-1130.

Holland,J.H. (1975) Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor.

1 Goldberg,D.E. (1989) Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, New York.
Wodak,S.J. and Rooman,M.J. (1988)rent Opinion in Structural

structures such as bulge loops and pseudoknots. Because of theiology 3, 247-259.

limitations of computational resources currently available, wa3
think the GA based algorithm with an extensive sampling space
as reported in this paper is applicable only to loops shorter thgp
about 20 nucleotides. However, if long-range structural informag
tion is available for a larger molecule, the global search probless
can be divided into small problems as done by the entire tRN&X
modeling by Majoret al. (24). Further improvements of the
technique will also lead us to the modeling of larger RNAs th%
play various roles in a cell.
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