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Abstract In order to investigate the molecular mechanisms that
alter intron size, we conducted an extensive interspecies
comparison of homologous introns among three mammalian
groups: human, artiodactyls, and rodents. The size differences of
introns were statistically significant among all three groups
(longest intron was for human and shortest for rodents), and
appear to be due to the accumulation of small deletions,
according to the separate count of insertion and deletion
frequencies. The distribution of intron size differences also has
a shape similar to that for the distribution of insertion/deletion
sizes found in pseudogenes. It is suggested that introns are
selectively neutral to small-scale changes of the genome size,
which inherently contain the bias of favoring short deletions
against short insertions.
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1. Introduction

Since the discovery of introns, an extensive body of research
has characterized the intron/exon organization of eukaryotic
genes, and has contributed to the understanding of the evolu-
tionary history of introns and associated molecules [1-5]. One
of the major features of the intron structure uncovered by
statistical analyses is the distribution profile of intron sizes.
In contrast to the size distribution of exons which is more like
a normal distribution with a peak around ~ 120 nt, the size
distribution of introns is asymmetric with a smaller peak
around ~ 90 nt and a long trailing tail. The biological impli-
cation of this feature is still unclear but, in terms of a practical
aspect, the existence of long introns makes the prediction of
coding regions difficult. Thus, we wish to identify any deter-
minant factors that govern the distribution of intron lengths.
This paper presents new statistical features that have been
identified from the existing DNA sequence data, which may
be interpreted in the context of molecular mechanisms that
change the size of an intron.

Recent studies reporting on the size differences between hu-
man and avian introns and between human and mouse in-
trons [6,7] seem to give a clue for elucidating the underlying
molecular mechanisms of intron size alterations. Both studies
suggest that organisms with smaller genome sizes have shorter
introns. Thus, there could be a correlation between macro-
scopic genome and microscopic intron structures. The size
of a genomic sequence can be changed by insertions and dele-
tions, although a number of different molecular mechanisms
may be involved. In contrast to the point mutations that have
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been extensively analyzed, especially in coding regions, inser-
tions and deletions have not been analyzed well because of the
scarcity of data and the difficulty of alignment. We have ac-
cumulated by far the largest data set of orthologous genes
from three mammalian orders: Primates, Artiodactyla, and
Rodentia. We focus our analysis mostly on introns because
there are now enough data available, because the intron
boundaries are well defined, and because the alignment is
not difficult for closely related organism groups.

The accumulation of deletions is reported to be faster than
that of insertions in DNA sequences of human processed
pseudogenes [8]. Because bias between deletions and insertions
may be a major factor that determines intron size, we exam-
ined whether this tendency holds true for genic non-coding
sequences, i.e., non-coding sequences adjacent to protein cod-
ing regions, especially introns. The statistical analysis pre-
sented here focuses on (1) separate counts of insertions and
deletions, (2) comparison of the lengths of orthologous in-
trons between two organism groups to estimate insertion/dele-
tion events, and (3) correlation of intron size differences with
the chromosomal positions.

2. Materials and methods

2.1. Extraction of sequence data

DNA sequences were selected from GenBank release 89. All DNA
and ¢cDNA sequences with annotations of protein coding sequences
(CDS) were extracted when they contained both start and stop co-
dons. There were 6429 human sequences, 6681 rodent sequences, and
1316 artiodactyl sequences. Among them 614 human, 556 rodent, and
100 artiodacty! sequences contained introns.

Interspecies comparisons require identification of orthologous rela-
tions of genes from a pair of species. With the assistance of HOVER-
GEN (Homologous Vertebrate Genes) database release 13 [9], which
contained phylogenetic trees and multiple sequence alignments of a
number of protein groups, we constructed orthologous gene date sets.
We omitted the following sequences because of ambiguous orthology:
MHC class I and I families, immunoglobulin family, and T-cell re-
ceptor family. As a result, we obtained 457 intron pairs from 106
human/rodent genes, 77 intron pairs from 31 human/artiodactyl
genes, 76 intron pairs from 28 artiodactyl/rodent genes, and 93 intron
pairs from 35 mouse/rat genes. In the present work, multiple introns
in a gene were individually analyzed. We also obtained 3’ transcribed
non-coding sequence pairs from 50 human/monkey (old world mon-
key) genes, which was to be used for estimation of sequence diversity
in both coding and non-coding sequences. For analysis of insertion
and deletion frequencies by comparison of the three species, we ex-
tracted genic non-coding sequences of 10 homologous genes from
human/hominoids/monkeys totaling about 6 knt. The GenBank locus
names of our data sets are available upon request by E-mail to:
ogata@kuicr.kyoto-u.ac.jp.

2.2. Estimation of mutageneses

In order to count the accumulated natural mutageneses, i.e., inser-
tions, deletions, and nucleotide substitutions, multiple alignments of
intron sequences, flanking non-coding sequences, and translated cod-
ing sequences were produced by the alignment program CLUSTAL-V
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[10]. For analysis of gaps in the alignments, we employed the three-
species strategy taken by Gu and Li [8], which enabled us separately
to count deletion and insertion events in DNA sequences after separa-
tion of the closest species pair.

The mutation rate in coding sequences was measured in terms of
the percent difference of third codon positions of aligned sequences,
ie., the synonymous difference frequency (SDF) [11]. In order to
estimate the mutation rate in non-coding sequences, we calculated
the percent difference, K, of aligned 3’ transcribed non-coding se-
quences eliminating gaps in the alignment.

2.3. Elimination of repetitive DNA

There is a large number of known repeated sequences dispersed in
mammalian genomes. Repetitive sequences change the lengths of non-
coding sequences and genome size. In order to estimate the effect on
our data set, we compared the intron sequences to REPBASE in the
NCBI Data repository (1995), a large compilation of repetitive
sequences, by the similarity search program BLASTN [12]. We
used all the mammalian-related repetitive sequences available from
REPBASE. The threshold score for similarity was set to S = 200,
which resulted in detection of a number of high-scoring segment pairs
including the completely matching pair of 40 nt and the least match-
ing (54%) pair of 259 nt. Thereafter, overlapping repetitive segments
were merged and the lengths of continuous stretches of repetitive
DNA were estimated.

3. Results

3.1. Insertion and deletion frequencies

To estimate the insertion/deletion frequencies between hu-
man and hominoids, three-way multiple alignments of the
genic non-coding sequences were made for 10 homologous
genes from human, hominoids, and old world monkeys. The
produced alignments of the total of more than 6 knt con-
tained 93.7% matches, 3.8% mismatches, and 2.5% gaps be-
tween human and hominoid sequences. The alignments were
insensitive to the scoring parameters of CLUSTAL-V and
were considered highly reliable. An insertion or deletion was
assigned to a gap in the human or hominoid sequence using
the monkey sequence as a reference.

The analysis showed a significant difference between the
numbers of insertions and deletions. In all 24 gaps in the
alignments, 21 were deletions and only 3 were insertions,
which was consistent with the previous observation of the
higher frequency of deletions than insertions among human
processed pseudogenes [8]. The two-tailed binomial test gave
P <0.0003 under the null hypothesis of equal frequency of
deletions and insertions. The maximum length of a gap ob-
served in the alignment was a 16 nt deletion. Therefore, the
observed tendency does not seem to be due to transposable
elements like SINEs and LINEs, which usually are consider-
ably longer. The higher frequency of short deletions than
short insertions in genic non-coding sequences may thus be
considered a factor to decrease the size of genomic DNAs and
introns.

Table 1
The average percent difference of intron sizes between two organisms
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3.2. Intron size differences

The size of human introns is plotted against the size of
rodent homologues in Fig. 1. As expected, the intron size
was well correlated between human and rodent homologues
with the correlation coefficient of R=0.89 (P < 0.005). Devia-
tion of the regression line [13] from the diagonal line indicates
the average difference of intron sizes between human and
rodents. The actual values of the average percent difference
of intron sizes are shown in Table 1 for the four organism
pairs analyzed. A human intron was, on the average of 457
samples, 22.5% longer than the corresponding rodent intron.
Although the standard deviation (SD) appeared large, the
difference was highly significant (P < 0.005). Interspecies com-
parison of 76 samples between human and artiodactyls exhib-
ited, on the average, 18.8% longer introns for human
(P <0.005). Comparison of 76 samples between artiodactyls
and rodents showed, on the average, 33.2% longer introns for
artiodactyls (P < 0.025). However, comparison of 93 samples
between mouse and rat did not show any significant differ-
ence.

One may think that the observed differences of intron sizes
can be attributed to the amplification of repeated DNA se-
quences. We removed known repeated sequences according to
the procedure described in Section 2 and re-calculated the
average intron size differences (Table 1). The differences be-
tween human and rodents, and between artiodactyls and ro-
dents, decreased to 14.7% and 30.3%, respectively, but both
values remained significant (P < 0.005). However, the differ-
ence between human and artiodactyls became insignificant
when it decreased from 18.8% to 4.2%. The difference between
the closest pairs of mouse and rat also decreased from 3.4% to
2.5%, but it now appeared more significant (P <0.05) due to
the smaller standard deviation.

In addition to the average percent difference of Table 1, the
distribution profiles of intron size differences are shown in
Fig. 2, which reveals more detailed features. In all 457 com-
parisons 68.0% of human introns were longer than corre-
sponding rodent introns (Fig. 2a). When the repeated se-
quences were removed, 64.3% of human introns were still
longer than rodent introns. The artiodactyl/rodent compari-
son showed a similar tendency. In all 76 comparisons, 73.7%
of artiodactyl introns were longer than corresponding rodent
introns (Fig. 2¢). This value also remained at a similar level
after the removal of repeated sequences. All these differences
were significant according to the Wilcoxon signed rank test
(P < 0.005), which coincided with the standard t-test for the
length difference shown in Table 1. For human/artiodactyl
comparisons, 57.1% of human introns were longer than artio-
dactyl introns (Fig. 2b). In this case, however, the observed
tendency disappeared after removal of repeated sequences.
The Wilcoxon signed rank test gave no significance for this

Organism pair Sample size Raw data set After removal of repetitive DNAs

Size difference* SD P Size difference* SD P

(7o) (Vo) (%) (%)
Human > rodents 457 22.5 723 <0.005 14.7 60.0 <0.005
Human > artiodactyls 77 18.8 69.1 <0.025 4.2 38.0 -
Artiodactyls > rodents 76 332 81.6 <0.005 303 81.0 <0.005
Mouse = rat 93 34 28.2 - 2.5 11.6 <0.05

*The size difference is defined with the shorter sequence as a reference.
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Fig. 1. The intron length from human is plotted in the natural loga-
rithmic scale against the corresponding intron length from rodents.
The correlation coefficient is: R=0.89. The first principal compo-
nent axis (solid line) and the diagonal line (dotted line) are shown.

organism pair. It is interesting to note that the shape of either
half of each distribution profile in Fig. 2 is similar to the
known distribution function found in pseudogenes [8], fi «
k™", where k is the insertion or deletion size and b is a con-
stant.

3.3. Relationship between the intron size difference and
mutation rate

The SDF (synonymous difference frequency) value of cod-
ing sequences can be considered a measure of the mutation
rate that varies with chromosomal positions, because most of
the silent substitutions in mammalian genes appear to be se-
lectively neutral [14-16]. However, since SDF is calculated
from the alignment of coding sequences, the relation between
SDF and the sequence difference, K, in non-coding sequences
has to be established before using SDF as a measure of the
mutation rate of non-coding sequences as well.

The alignments of 50 sequence pairs between human and
old world monkeys were constructed for the analysis of cod-
ing and 3’ untranslated regions. There was a significant cor-
relation between the sequence difference of this regions, K,
and the synonymous difference, SDF. The correlation coeffi-
cient was R=0.46 and the probability of observing this value
by chance was P <0.005. Thus, we conclude that the muta-
tion rate is fairly uniform, at least, in a genic sequence ex-

Table 2
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tending both coding and non-coding regions. It is now possi-
ble to use SDF of coding sequences as an appropriate
qualitative measure of the point mutation rate of adjacent
introns and to examine any relationships between the intron
size difference and mutation rate.

When we divided the largest data set of human and rodent
introns into two by the mean value of SDF, a positive corre-
lation was observed between the size difference and SDF va-
lue, as shown in Table 2. The intron size difference was 29.7%
for the higher SDF group and 15.6% for the lower SDF
group, and the latter was significantly smaller than the former
(P <0.05). This means that a faster evolving intron in terms
of point mutations shows a larger size difference than a slower
intron. This tendency remained after removal of repetitive
sequences, although the statistical significance level was de-
creased (Table 2).

3.4. Relationship between the intron size difference and isochore
Sfamily

It is known that long stretches (5> 200 knt) of GC- or AT-
rich sequences, or isochores, constitute heterogeneous gen-
omes of warm-blooded vertebrates and that they are related
to R and G chromosomal bands [17,18]. The GC level of the
isochore family where a gene is located is well correlated to
the GC level of the third codon position. It has been argued
that there is a correlation between the frequency of recombi-
nations, which can result in expansion and shrinkage of repeat
elements, and the GC level of isochore families [19]. In order
to check if there is any correlation between the intron size
difference and isochore family, we used the following assign-
ment [18]. If the GC level of third codon positions was less
than 57%, L (L1+L2) isochore family was assigned to the
sequence, otherwise H (H1+H2+H3) isochore family was as-
signed. As shown in Table 2, for human and rodents the
intron size difference was 23.0% in H family and 20.7% in L
family (Table 2). When the H family was further divided at
the GC level of 75%, the size difference was 22.0% for HI+H2
family and 23.6% for H3 family. Thus, no correlation was
observed between the intron size difference and isochore fam-
ily (GC content) of the genes.

4. Discussion

Detailed analysis on the gaps in the alignments of genic
non-coding sequences revealed the higher frequency of dele-
tions than insertions. The imbalance between these two muta-
genic events can be a driving force that decreases the genome
size and also the intron size. We observed gaps (insertions and
deletions) of fairly small sizes in non-coding sequences, the
longest one being a 16 nt deletion, which is consistent with
the previous observations of short deletions [20-22]. The dis-

Correlation of the percent difference of intron sizes with the synonymous difference frequency and isochore family

SDF groups Isochore families
Low High L family H family
Number of samples 233 224 61 396

Raw data set

Significance

After removal of repetitive DNAs
Significance

15.6% (P < 0.005)
P<0.05
10.5% (P < 0.005)

29.7% (P < 0.005)
P<0.05
19.1% (P < 0.005)

20.7% (P <0.01)

15.6% (P <0.01)

23.0% (P <0.005)

14.8% (P < 0.005)
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Fig. 2. The frequency f« of observing k& nucleotide differences be-
tween corresponding introns from two organisms. The size differ-
ence k(organisml, organism2) is calculated by the intron size of or-
ganism] minus the intron size of organism2. The filled bar shows
the frequency in the raw data set, and the open bar shows the fre-
quency after the removal of repetitive DNAs. Each bar represents
the frequency within a given range of &, except the bars in the mid-
dle that indicate the frequencies for the single value of k=0 (no dif-
ference).

tribution of gap lengths found in the alignment of human/
rodent introns also indicates a higher frequency of smaller
gaps (data not shown). As mentioned the shape of the distri-
bution in Fig. 2 was similar to the deletion size distribution of
pseudogenes [8]. again suggesting a mechanism of accumulat-
ing small deletions. It has long been known that insertions
and deletions often cause a lethal frame-shift at the stage of
meiosis [23]. Since generation times are different for different
organisms, the bias between deletions and insertions may af-
fect differently on different organisms; namely, organisms
with shorter life cycles should be affected more and the size
of their introns should become shorter.

This was in fact the case in our analysis of homologous
introns among three organism groups from different mamma-
lian orders: human, artiodactyls, and rodents. The intron size
was the longest for human and the shortest for rodents. The
intron size differences observed for human/rodents and artio-
dactyls/rodents, which remained significant even after removal
of the repetitive sequences, seem to support the relationship to
the generation time of these organisms.

The observation of larger intron size differences at chromo-
somal locus suffering higher rates of point mutations implies a
correlation between deletions and point mutations. This may
be attributed to the conditions that surround DNA, such as
mutagenic agents and the DNA repairing system. Different
local chromatin structures can induce an attack of different
types of DNA damaging agents [24]. The condensation and
decondensation of chromatin structures, which is accompa-
nied by inactivation and activation of a gene, are related to
the sensitivity to a nuclease involved in the repairing system
[25,26]. Together with the previous report of a positive corre-
lation between the rate of insertion/deletion events and the
amino acid substitution rate [27], our observation supports
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the existence of molecular mechanisms that cause point muta-
tions and insertions/deletions in a correlated manner.

Duret et al. [6] found that the intron length was on average
1.6 times longer in GC-poor than in GC-rich isochores. They
argued that a major mechanism responsible for the phenom-
enon was a higher recombination frequency in GC-rich iso-
chores [19], which could result in excisions and/or insertions
of DNA fragments. We did not, however, observe any signif-
icant correlation between the interspecies intron size difference
and the isochore family (Table 2).

The C-value paradox, i.e., lack of correlation between the
genome size and organismic complexity, suggests the existence
of molecular mechanisms that increase the genome size, e.g.,
amplifications of repeat elements, irrespective of mechanisms
of increasing complexity, e.g., functional gene duplications. In
contrast, our observation suggests the existence of small size
deletions that decrease the genome size. Although our analysis
is based only on sequences in genic regions, it is not unrea-
sonable to think that the same molecular mechanism is work-
ing on the entire genome. A genome may be viewed as a
dynamic entity under competing mutation pressures for in-
creasing and decreasing the genome size. It appears that mu-
tation events that involve long stretches of DNAs are favored
for increasing the genome size, i.e., duplications and inser-
tions, while the mutation events that involve short pieces of
DNAs are favored for decreasing the genome size, i.e., small
size deletions. Thus, different organisms, as well as different
regions of a genome of an organism, may be under different
balance conditions for these two types of mutations.

Non-genic non-coding regions may be under little selection
pressures and both types of mutations can be accepted, result-
ing in the tendency of large-scale changes. Translated coding
regions are under high selection pressures and either type of
mutation cannot be accepted, resulting in little changes in the
length. In contrast, genic non-coding regions including introns
may be under little selection pressures for small-scale muta-
tions but under higher selective pressures for large-scale mu-
tations. Namely, introns are selectively neutral to small-scale
mutations, which turned out to be favored for decreasing the
genome size. The distribution profile of intron lengths, a small
peak around ~ 90 nt and a trailing tail of long introns, is also
consistent with the argument of frequent deletions of small
segments and occasional expansions and insertions of long
segments. As shown in this paper, introns seem best suited
to detecting the molecular event of small-scale mutations.
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